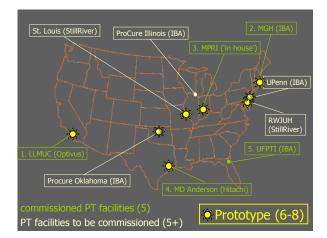
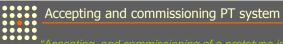
Code of Practice for the Proton Therapy System Acceptance testing and clinical commissioning

of a Proton Therapy System


Roelf Slopsema


Definitions

`.. to determine that all applicable radiation safety standards are met or exceeded and that the machine meets or exceeds the contractual specifications.'

`....refers to the process whereby the needed machine-specific beam data are acquired and operational procedures are defined."

<u>acceptance</u> needs to reflect maturity product

- difference between design specifications and production specifications
- for <u>new developments</u>, specifications and acceptance tests need to be defined by <u>manufacturer and customer</u> together

proton projects often <u>bundle</u> delivery, alignment, imaging, OIS, tx planning,... systems

- standard protocols for commissioning do not apply
 - can still provide guideline

up to the physicist to develop commissioning <u>plan</u> based on <u>clinical</u>. requirements

Acceptance tests

specified in the <u>contract</u>

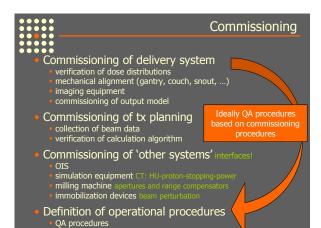
- a <u>limited set</u>, covering random samples of the complete 'space' of delivery parameters

- describe in <u>detail</u> the measurement setup and the specified limits
- distinction between <u>design</u> specifications and <u>installation</u> specifications
- do not allow you to treat a single patient

Examples of PT acceptance tests

Minimum SAD:

The SAD will be measured by simultaneously irradiating two X-ray films located 1 meter apart in a square collimated beam. The source position will be obtained by geometrical reconstruction, using the x-ray film images and their relative positions. The test will be performed for 1 field configuration. The test will be deemed passed if the SAD is equal to or larger than 2 meters.

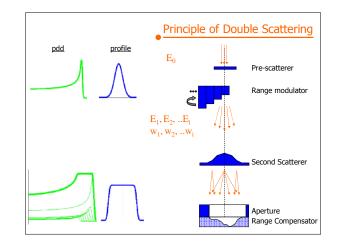

⇒ design specification

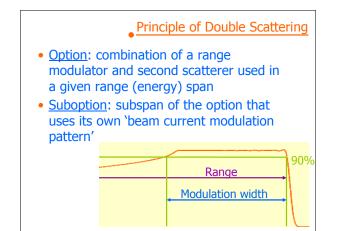
Examples of PT acceptance tests

Range accuracy:

The depth dose curve will be measured for 5 different requested ranges, including the minimum and maximum range. Measurements will be made in a water phantom. Range is defined as the water-equivalent depth of the distal 90% point of the depth dose curve along the beam axis. The test will be deemed passed if the measured range is within ± 1.0 mm of the specified range.

 \Rightarrow production specification

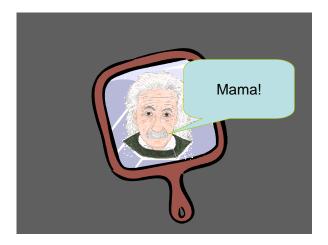

Vendor

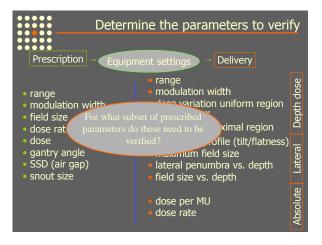


You just bought a proton-therapy system from us. Congratulations!

• We will be ready to hand over the first room to you on June 1.

• Each room has 8 double-scattering options. Each option has three suboptions that use a different beam current modulation.

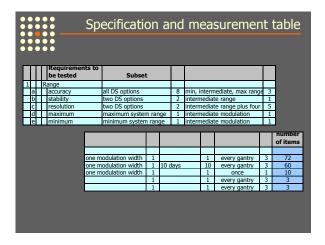

 You just bought a proton-therapy system from us. Congratulations!


 We will be ready to hand over the first room to you on June 1.

 Each room has 8 double-scattering options. Each option has three suboptions that use a different beam current modulation.

• Our system is great: the range and modulation width can be varied continuously.

 The scattered field size is fixed, but we have variable collimators and three snouts.


Does the <u>range</u>		fining the subset - Range
Option	Yes	
Suboption	Maybe	
Modulation	No	
Field size	No	
Snout size	No	Measure
Gantry angle	Unlikely	4 SOBP's per suboption
Dose rate	No	2 SOBP's for 2 gantry angles
Dose	No	
SSD	No	

Defining	the subset -	PDD	uniformity	

Does the <u>pdd uniformity</u> depend on....

· · · · · · · · · · · · · · · · · · ·	, ,	
Option	Yes	
Suboption	Yes	
Modulation	No	
Field size	Yes	
Snout size	Maybe	Measure
Gantry angle	Unlikely	• 1 full-mod SOBP per suboption
Dose rate	Unlikely	 2 sobp for all snouts 1 sobp for 2 gantry angles
Dose	No	 1 sobp for 2 gandy angles 1 sobp for 3 dose rates
SSD	Yes	 2 sobp for varying SSD
		 sobp's for small aperture size

ł	Specification and measurement table			
	Т	Requirements	s to Goal	Specification
1		Range		
Ĥ	а	accuracy	verify spec	< +/- 1 mm for R<8.0 g/cm2, < +/- 1.5 mm for R>8.0 g/cm2
	b	stability	verify spec	< +/- 1 mm over 2 weeks
	c	resolution	verify spec	< 1 mm
	d	maximum	verify spec	28.0 g/cm^2 for DS, 20 g/cm^2 for SS (see specs per option)
	e	minimum	verify spec	5.0 g/cm^2 for DS, 3.0 g/cm^2 for SS (see specs per option)
				5.6 g/cm 2 for 55, 5.6 g/cm 2 for 55 (acc spee per option)
				pro gen i z ni os su gen z ni su ce spes pe opony
				jero gian iz na os, sto gien iz la so ce spes per optorn
				pro gian i z na oci sto gian z na so deci geos per apoun)

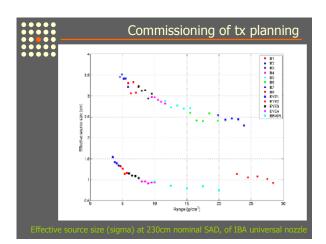
	Specification and measu	rement table
Name test	Description	Result
Daily measurement DS reference field 1	Using the crs phantom measure the depth dose profile of field# 2. Measure the output at the middle of the SOBP using the electrometer. In addition time the dose delivery using a stop watch, to determine the actual dose rate in <i>Current</i> . Pareast dalk for 10 days:	stability range, SOBP shape, modulation width, dose rate and output
Daily measurement DS reference field 2	Using the crs phantom measure the depth dose profile of field [#] 3. Measure the output at the middle of the SOBP using the electrometer. In addition time the dose delivery using a stop watch, to determine the actual dose rate in <i>Cyrdmin</i> . Reveat daily for 10 days.	stability range, SOBP shape, modulation width, dose rate and output

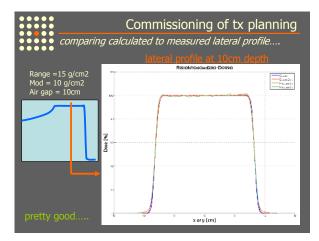
Scheduling

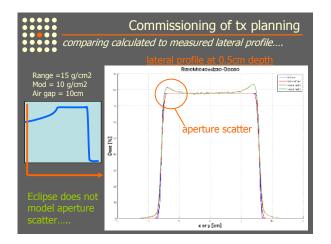
- First-patient treatment versus ramp-up
- Commissioning effort versus QA effort
- The expected patient mix and ranges to be commissioned
- Commissioning different rooms of the same design

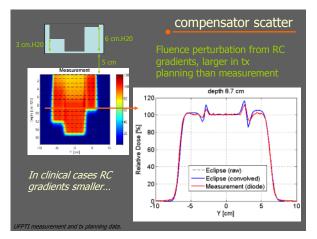
Setting up a commissioning plan

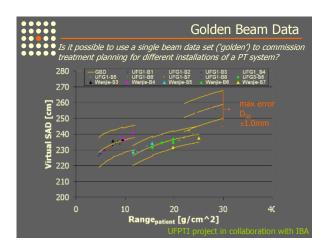
- Identify the properties that need to be verified
- 2. Determine the subset of equipment settings on which the property depends
- 3. Define the measurements required to verify the properties
- 4. Combine the measurements into a measurement plan
- 5. Schedule the measurements, taking into account
 - desired start treatments
 - expected patient load expected patient mix

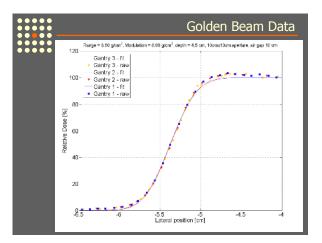

Commissioning of tx planning


I. Collection of beam data


- pristine peak pdd / SOBP open-field profiles Æ virtual SAD half-beam profiles Æ effective source size fluence along beam axis Æ effective SAD


II. Validation dose calculation against measurement


- water phantom including inhomogeneities, oblique beams, etc...



Conclusion • The limited number of proton centers and evolving technology, makes commissioning a custom job for now... • Knowledge transfer between new and old proton centers is important in moving protons 'mainstream' • Setting up a comprehensive commissioning plan helps to set realistic expectations and to discuss trade-offs ...patient load, commissioning time, QA time,... • Commissioning protons is fun!

